
LinkedIn | Twitter | Github

Introducing Fluvio:
The Programmable
Data Platform
For Continuous Intelligence

C
o

n
ti

n
u

o
u

s
In

te
lli

g
en

ce
 P

la
tf

o
rm

in
fi

n
yo

n
.c

o
m

In the last few years, organizations started to adopt

stream processing architectures to power a new

generation of data-driven services that can detect events,

predict behaviors, and respond to customer demand in

real-time. As these early pilots become production-ready

services, organizations gradually expand these stream

processing and analytics pipelines to other services.

http://infinyon.com
https://www.linkedin.com/company/infinyon/
https://twitter.com/infinyon
https://github.com/infinyon
http://infinyon.com
https://www.sigops.org/2020/streams/

02

Moreover, as data volumes double every few years, organizations that extract valuable

and relevant business signals in the shortest amount of time gain a significant

competitive advantage. We believe organizations that choose data streaming technology

will enjoy an impactful, long-lasting competitive advantage.

Yesterday’s Monolithic Stream Processing Platforms

Most stream processing frameworks available today - Kafka, Pulsar, Flink, Spark, etc. -

were born in the Big Data era and designed as monolithic platforms that require sizeable

specialized staff to deploy, operate and maintain. Some admin operations such as setting

up data sharing or rebalancing stream after config update require an IT ticket to be

handled by the operation team.

These Java-based stream processing platforms assume a homogenous and monolithic

enterprise development environment of Y2000 where one language rules it all. Some

have reluctantly added partial support for Python. Other languages such as Node, Go,

and Ruby offer a subset of functionality in independent client libraries. However, Java-

derived languages remains the only reliable way to customize stream processing. This

barrier makes it difficult for many non-Java developer communities to leverage the power

of real-time stream processing. Github expects 100M developers by 2025; most of

them will be new developers and will not be familiar with Java.

Softbank estimates over 1 trillion devices connected on the Internet of things by

2025 driven by wearables, drones, self-driving cars, inter-connected devices, and more.

These networks need stream processing for immediate feedback and real-time analytics

for mission-critical decisions. Java-based systems demand significant CPU and memory

resources, making them unsuitable for extending stream processing to edge devices.

One of the most significant drawbacks of Java-based stream processing frameworks

is the Jar wrapper required for distribution. Jars were designed at the dawn of the

Internet when browsers were rudimentary HTML readers and programs required runtime

applets (aka. sandboxes) to operate. These sandboxes have been riddled with security

vulnerabilities, and new browsers are gradually deprecating them. Some frameworks

resorted to container technologies such as Docker to add another layer of isolation and a

workaround for dynamic loading. Unfortunately, the container introduces another layer of

security issues and introduces more latencies and cold-startup time.

The lack of adequate tooling available in the market makes the journey to real-time data

stream processing challenging, error-prone, and packed with customizations often

reserved for organizations with highly skilled architects and a virtually unlimited budget.

In the last few

years, organizations

started to adopt

stream processing

architectures

to power a new

generation of data-

driven services

https://kafka.apache.org/
https://pulsar.apache.org/
https://flink.apache.org/
https://spark.apache.org/
https://www.predictiveanalyticsworld.com/machinelearningtimes/the-death-of-big-data-and-the-emergence-of-the-multi-cloud-era/10527/
https://www.infoworld.com/article/3599874/github-expects-100-million-software-developers-by-2025.html
https://venturebeat.com/2018/10/16/softbank-believes-1-trillion-connected-devices-will-create-11-trillion-in-value-by-2025/
https://venturebeat.com/2018/10/16/softbank-believes-1-trillion-connected-devices-will-create-11-trillion-in-value-by-2025/
https://en.wikipedia.org/wiki/JAR_(file_format)
https://www.aquasec.com/cloud-native-academy/docker-container/
https://techbeacon.com/enterprise-it/container-security-what-you-need-know-about-nist-standards
https://builtin.com/software-engineering-perspectives/cold-starts-challenge-serverless-architecture

03

Democratizing data-in-motion

Companies are striving to accelerate digital transformation and become agile data-driven

organizations. Yet data is a precious asset often locked down in data lakes or specialized data

silos and managed by data teams responsible for storage and safekeeping. As a result, data users

lack visibility on what data is available to them and must wait on a lengthy approval process to

gain access. This segregated approach to data hinders learning, prevents fast-paced innovation,

and ultimately slows down the pace of the business. The Data Mesh white paper written by

Zhamak Dehghani explains how current data paradigms are ill-suited for modern organizations.

Monolithic data lakes and data silos should be divided into data domains and managed by

decentralized teams. These data owners treat data as products and manage the data lifecycle

end-to-end. They are responsible for data discovery, quality, and the SLA required by data

consumers. This level of autonomy is critical for stream processing, where teams are responsible

for generating actionable signals in real-time.

Democratized stream processing requires a self-serviced operational model on top of shared

infrastructure. In this model, an infrastructure maintains the shared infrastructure, and the data

domain team manages the data. The infrastructure team scales on-demand and re-balances the

data dynamically across entire organizations. The data domain teams operate their data stream

products independently and export interfaces as needed.

A modern streaming platform must have the following attributes to meet these conditions:

Cloud-Native by design

Cloud-native-based infrastructure is a loosely coupled system where each component can run

and scale dynamically. As a result, these systems are well suited for dynamic platforms such as

public, private clouds. The cloud-native streaming platform offer:

•	 Horizontal scale - to meet data elasticity requirements.

•	 Self-healing - to recover from failures without human intervention.

•	 Declarative management - to reduce the management burden.

•	 Kubernetes native - to plug-in native in K8 environments.

Small footprint and resource-efficient

The data-at-motion stream processing must handle an order of magnitude higher data than the

products storing data-at-rest. Consequently, stream process platforms must be small enough

to boot within milliseconds and operate efficiently on any system architecture. Moreover, it

must support a variety of deployments from small organizations to large enterprises. The ideal

platform has:

•	 Small memory footing - to save on cloud resources and run on IoT devices.

•	 Low latency - to meet real-time latency requirements.

•	 Leverage multi-core CPU architecture - to operate at maximum performance.

•	 Fully event-driven with async architecture - to support large I/O.

https://martinfowler.com/articles/data-monolith-to-mesh.html
https://www.redhat.com/en/topics/cloud-native-apps

04

Support Data protection and isolation

Shared infrastructures require a new level of security and privacy protection. In today’s zero-

trust environment, data centers, clouds, and edges are considered insecure by default.

Products for data-in-motion must segregate data streams and isolate users and teams from

each other. Fine-grained context-area rules are used to define:

•	 Roles - to limit user access based on their role in a group and organization.

•	 Geo-Locations - to restrict access based on geographical location.

•	 Identities - to recognize and process data based on their identity.

Stream processing engines with access to data must have a robust sandboxing environment

that can enforce access control and protect data records from impacting each other.

Full-featured data APIs

All companies are becoming technology companies. Since each team is the owner of their data,

they must have API and tools to automate the data product. The self-service stream processing

platform must offer granular APIs for developers who want to build robust real-time data

services and ease-to-use tools for non-technical users. While SQL-based tools may be adequate

for querying data-at-rest or a data lake, they offer limited functionality for developers who need

full API access for automation. Data owners need the ability to:

•	 Customize and manage Data Lifecycle.

•	 Orchestrate long-running data process.

•	 Assign declarative API for stream processing.

Development APIs must be available in many widely used programming languages such as

Node/JavaScript, Python, Go, Ruby, etc.

Support for data governance

Self-service and de-centralization allow teams to become independent data owners. However,

to leverage the team’s data as a whole, self-service infrastructure must implement federal

governance to aggregate and correlate data cross-organization with policy enforcement.

Consumers and regulatory agencies have raised expectations for data protection and securities

by regulating access to PII and imposing consumer data protection policies such as GDPR.

The shared platform is well-positioned to implement federal data governess by baking consistent

interoperability and policy standards across teams in conjunction with common access control

and audit trails.

Companies
are striving to
accelerate digital
transformation
and become
agile data-driven
organizations.

https://en.wikipedia.org/wiki/Zero_trust_security_model
https://en.wikipedia.org/wiki/Zero_trust_security_model
https://en.wikipedia.org/wiki/Personal_data
https://gdpr.eu/

05

Fluvio: Programmable Platform for Data-in-motion

At InfinyOn, we are building Fluvio as a purpose-built stream processing platform for data-in-

motion. Although the platform starts with similar standard stream processing functionalities such

as consumer and producer as with legacy Java-based stream processing frameworks, Fluvio’s

performance, scalability, deployment flexibility, and programmability allow building the data-in-

motion infrastructure of the future.

Powered by Rust

We start with a strong foundation; The Rust language powers Fluvio. Rust, a modern

programming language built for speed, low overhead, cross-platform interoperability, and code

safety. AWS, Mozilla, Google, Facebook, Discord, Dropbox, and others use Rust to create a new

class of high-performance products, such as browsers, chat servers, network proxies, database

servers, real-time systems, and more.

Fluvio needs to perform stream processing at a massive scale. By choosing Rust, we gained the

following benefits:

Performance by Default

Rust compiles to native code for blazing-fast performance. Without Garbage Collector pauses,

Rust can process streams with very low consistent latency. The language implements a zero-

cost async framework capable of handling many concurrent I/O streams with minimum CPU

usage. Rust developers can write high-level functional code similar to Java and Python without

rolling out hand-crafted machine code to get performance. Performance and zero-cost cost

abstraction make Rust an ideal language for data-in-motion.

Safety by Default

Rust is safe by default programming language, unlike any other language such as C, C++, Go,

or other. It performs many safety checks during compile time instead of discovering fault during

production. Rust doesn’t allow NULL, which happens to be one of the worst in the software

mistakes. With borrow checker, Rust prevents buffer overflow and dangling pointer that

malicious hackers could take advantage of. Microsoft stated that memory safety issues cause

70% of CVE in Windows. The borrow checkers also check for concurrent logic, which is essential

for creating scalable stream processing infrastructure.

Safety and Performance of Rust enable
the Fluvio community to ship a robust,
high-performance data streaming
platform from day one.

https://www.infinyon.com/
https://www.fluvio.io/
https://www.fluvio.io/
https://www.rust-lang.org/
https://www.fluvio.io/
https://www.rust-lang.org/
https://www.fluvio.io/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.nature.com/articles/d41586-020-03382-2
https://www.eginnovations.com/blog/what-is-garbage-collection-java/
https://www.rust-lang.org/
https://www.pubnub.com/blog/how-fast-is-realtime-human-perception-and-technology/
https://blog.logrocket.com/a-practical-guide-to-async-in-rust/
https://blog.knoldus.com/rust-can-never-be-null/
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/

06

Cloud-Native Control Plane

Fluvio’s control plane took its inspiration from Kubernetes. Fluvio manages its software

components using declarative programming with eventual consistency. With declarative

management, the user specifies intent, and the platform attempts to fulfill the request by

feedback loop monitoring controllers. For example, wait for additional resources, re-balance

workloads, perform reconciliation, trigger self-healing from hardware or software failures,

and more.

Fluvio objects can be provisioned through various mechanisms: Kubernetes (kubectl)

commands, Fluvio CLI, InfinyOn Cloud, or programmatic admin API available in all supported

programming languages.

SmartModules: Programmable Stream Processing

At the heart of all stream-processing frameworks is the Stream Processor. SP treats a stream

as the core unit of work. Most of the legacy SP uses a fixed pipeline, which only implements fixed

subsets of data-in-motion needs:

•	 Ingestion

•	 Persistence

•	 Transmission

•	 Dispatching

•	 Computation (filters, maps, aggregates, joins, derivates)

Fluvio’s SPU (Stream Processing Unit) comes with a revolutionary programmable stream

pipeline. Data-in-motion pipelines need more customization than data-at-rest. For example,

filtering and cleaning data, idempotent producers, and others. With a Java-based streaming

framework, it is challenging to provide a programmable pipeline with performance and security.

Programmability by WebAssembly

SPU implements programmability by integration with WebAssembly technology. WebAssembly

is a portable binary-code format designed to run in a secure sandbox. It is proven W3 technology

to bring programmability to software such as Envoy Proxy, Cloudflare worker, Microsoft flight

simulator, CDN proxies, and more. SmartModules bring WebAssembly technology to real-time

data streaming offering an unprecedented level of customization.

SPU’s programmability capabilities eliminate the need to stitching together multiple clusters, as

seen in other data streaming platforms. SmartStream pipeline runs at native speed, decreasing

delays, increasing security, and reducing operational complexity.

At Infinyon, we are
building Fluvio as
a purpose-built
stream processing
platform for data-
in-motion.

https://www.fluvio.io/
https://kubernetes.io/
https://www.infinyon.com/blog/2021/06/introducing-fluvio/(https:/www.fluvio.io)
https://www.fluvio.io/
https://medium.com/stream-processing/what-is-stream-processing-1eadfca11b97
https://www.fluvio.io/docs/architecture/spu/
https://www.fluvio.io/docs/architecture/spu/
https://webassembly.org/
https://webassembly.org/
https://www.infinyon.com/blog/2021/06/introducing-fluvio/%5BWebAssembly%5D(https:/webassembly.org)
https://istio.io/latest/blog/2020/wasm-announce/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://forums.flightsimulator.com/t/getting-started-with-wasm/343390
https://forums.flightsimulator.com/t/getting-started-with-wasm/343390
https://www.fluvio.io/docs/smartmodules/

07

Secure by Default

SmartModules separates user stream operations from system stream. All user stream operations

are executed as a WebAssembly module in a protected sandbox with separate memory space

for user operations. Since user modules can only access data supplied by SmartStream, it can’t

access or modify protected information as PII data.

Fast Inline Computation

With processing time measured in low milliseconds, SmartModules offer the fastest and most

convenient way to manipulate data-in-motion. A Java-based system performing a similar

operation in memory-hungry JARS would see delays from 10 to 100-fold higher with garbage

collection and out-of-band management. A container-based system performing a similar

function has a significantly higher image size and an out-of-band communication channel,

increasing startup time and introducing communication overhead.

Support any development language

WebAssembly supports any language with bindings to the LLVM toolchain - Rust, JavaScript,

Python, Ruby, and Go. Fluvio offers abstractions, templates, utilities, and tools to make it easy

and convenient to build and customize stream processing modules.

We believe WebAssembly technology is the key to building high-performance, customizable data

streaming platforms.

Solomon Hykes, the creator of Docker, said the following:

“If WASM+WASI existed in 2008, we wouldn’t have needed to created Docker. That’s how

important it is. WebAssembly on the server is the future of computing. A standardized system

interface was the missing link. Let’s hope WASI is up to the task!”

Conclusion

InfinyOn is on a mission to accelerate the world’s transition to the real-time economy.

Programmable Data: Cancelling Data Gravity

Democratizing data is really about overcoming data’s gravity well. Unless it moves, data sits in

silos and accumulates gravity. Silo data are difficult to move due to physical storage limitations

and fear of exposing ourselves to security breaches. The key to canceling data gravity is

programmability. When we apply programmability to data as it moves between services, we can

protect, enrich, track and extract information in real-time. Data-in-motion will gradually become

an intelligence layer that connects the organization - people, tools, and services. Programmable

data, a simple concept that will change the way we manage data.

Fluvio is Open Source. Join Us

Fluvio is an open-source project, and we are committing to make it accessible for everyone. We

are at the beginning of our journey. Join us in building the next-generation platform for data-in-

motion. Whether you have feedback, ideas, suggestions, and want to become a contributor, reach

out. You can find us on Github and in Discord.

https://www.fluvio.io/docs/smartmodules/
https://hacks.mozilla.org/2017/07/memory-in-webassembly-and-why-its-safer-than-you-think/
https://www.fluvio.io/docs/smartmodules/
https://llvm.org/
https://www.fluvio.io/
https://twitter.com/solomonstre/status/1111004913222324225?lang=en
https://www.infinyon.com/
https://whatis.techtarget.com/definition/data-gravity
https://www.fluvio.io/
https://github.com/infinyon/fluvio/
https://discordapp.com/invite/bBG2dTz

LinkedIn | Twitter | Github

InfinyOn, a real-time data streaming company, has

architected a programmable platform for data in motion

built on Rust and enables continuous intelligence for

connected apps. SmartModules enable enterprises to

intelligently program their data pipelines as they flow

between producers and consumers for real-time services.

With InfinyOn Cloud, enterprises can quickly correlate

events, apply business intelligence, and derive value from

their data. To learn more, please visit infinyon.com.

About InfinyOn

https://www.infinyon.com/
https://www.linkedin.com/company/infinyon/
https://twitter.com/infinyon
https://github.com/infinyon
https://www.infinyon.com/

